Loading [MathJax]/extensions/TeX/AMSmath.js
Tomographerv5.4
Tomographer C++ Framework Documentation
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Modules Pages
Averaged Histogram

Averaging Raw Histograms

Given raw histogram counts from independent experiments, we can combine them into one histogram with error bars as follows. Let x_k^{(i)} be the raw histogram counts in bin k of experiment i of n. Then the full histogram counts y_k , with corresponding error bars \Delta_k , is

\begin{align*} y_k &= \frac1n \sum_i x_k^{(i)} \ ; \\ \Delta_k &= \sqrt{\frac1{n-1}\left(\langle (x_k^{(i)})^2 \rangle - \langle x_k^{(i)} \rangle^2\right)}\ , \end{align*}

where \langle\cdot\rangle = \frac1n \sum_i \cdot is the average over the different experiments.

Averaging Histograms Which Already Have Error Bars

Let x_k^{(i)} raw histogram counts, and suppose that we already have error bars \delta_k^{(i)} on these counts (e.g., from binning analysis).

The combined histogram y_k , with final corresponding error bars \Delta_k , is

\begin{align*} y_k = \frac1n \sum_i x_k^{(i)} \ ; \\ \Delta_k = \frac1n\,\sqrt{\sum_i \left(\delta_k^{(i)}\right)^2} \ . \end{align*}

(propagation of errors in error analysis in physics: \Delta f = \sqrt{ \left(\frac{\partial f}{\partial x}\right)^2 \Delta x^2 + \cdots } ).