Processing math: 100%
Tomographerv5.4
Tomographer C++ Framework Documentation
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Modules Pages
A Parameterization

Parameterize a traceless hermitian matrix A in an orthonormal basis of su(d). The (complex) traceless hermitian matrix A is written as

A = \sum_{j=1}^{d^2-1} a_j A_j\ ,

where the A_j are the normalized version of the generalized Gell-Mann matrices, i.e. A_j = \lambda_j/\sqrt2 where \lambda_j are defined as in Refs. [1-3].

Whenever we talk about the A parameterization of a matrix which is not traceless, we imply the A parameterization of its traceless part, i.e. A - \mathrm{tr}(A)\mathbb{I}/d.

  1. Wolfram MathWorld: Generalized Gell-Mann Matrix;
  2. Brüning et al., “Parametrizations of density matrices,” Journal of Modern Optics 59:1 1 (2012), doi:10.1080/09500340.2011.632097, arXiv:1103.4542;
  3. Bertlmann & Krammer, “Bloch vectors for qudits,” Journal of Physics A 41:23 235303 (2008) doi:10.1088/1751-8113/41/23/235303, arXiv:0806.1174.